使用内核方法放宽因果推断中的可观测性假设

Yuchen Zhu

with Limor Gultchin, Arthur Gretton, Anna Korba, Matt Kusner, Afsaneh Mastouri, Krikamol Muandet, Ricardo Silva

Talk at Causal Inference Seminars, 04.2023

Why relax observability assumptions?

Why relax observability assumptions?

Why relax observability assumptions?

Mask interesting relationships:

Kernel Mean Embeddings (KME)

$\mu_{P_X}(x) = \int k(x, y) P_X(y) dy$

Kernel Mean Embeddings

 $\mu_{P_X}(x) = \int k(x, y) P_X(y) dy$

Characteristic kernel: $P_X \mapsto \mu_{P_v}(y)$

Kernel Mean Embeddings

 $\mu_{P_X}(x) = \int k(x, y) P_X(y) dy$

Characteristic kernel: $P_X \mapsto \mu_{P_v}(y)$

 $\langle \mu_{P_X}, f \rangle_{H_X} = \mathbb{E}_{P_X}[f(X)]$

 $\mu_{W|a,x,z} := C_{W|A,X,Z} \left(\phi(a) \otimes \phi(x) \otimes \phi(z) \right)$

 $\mu_{W|a,x,z} := C_{W|A,X,Z} \left(\phi(a) \otimes \phi(x) \otimes \phi(z) \right)$

 $\widehat{C}_{W|A,X,Z} = \operatorname*{argmin}_{C \in \mathcal{H}_{\Gamma}} \widehat{E}(C), \text{ with}$ $\widehat{E}(C) = \frac{1}{m} \sum_{i=1}^{m} \|\phi(w_i) - C\phi(a_i, x_i, z_i)\|_{\mathcal{H}_{\mathcal{W}}}^2 + \lambda \|C\|_{\mathcal{H}_{\Gamma}}^2$

$$\mu_{W|a,x,z} := C_{W|A,X,z}$$

$$\widehat{C}_{W|A,X,Z} = \underset{C \in \mathcal{H}_{\Gamma}}{\operatorname{argmin}} I$$
$$\widehat{E}(C) = \frac{1}{m} \sum_{i=1}^{m} \|\phi(w_i) - \psi(w_i)\| = \frac{1}{m} \sum_{i=1}^{m} \|\phi(w_i) - \psi(w_i)\| = \frac{1}{m} \sum_{i=1}^{m} \|\phi(w_i)\| = \frac{1}{m} \sum_{i=1}^$$

- $_{Z}(\phi(a)\otimes\phi(x)\otimes\phi(z))$
- $\widehat{E}(C)$, with
- $-C\phi(a_i, x_i, z_i)\|_{\mathcal{H}_{W}}^2 + \lambda \|C\|_{\mathcal{H}_{\Gamma}}^2$

 $\widehat{C}_{W|A,X,Z} = \Phi(W)(\mathcal{K}_{AXZ} + m \lambda)^{-1} \Phi^T(A,X,Z)$

$$\mu_{W|a,x,z} := C_{W|A,X,z}$$

$$\widehat{C}_{W|A,X,Z} = \underset{C \in \mathcal{H}_{\Gamma}}{\operatorname{argmin}} \widehat{E}$$
$$\widehat{E}(C) = \frac{1}{m} \sum_{i=1}^{m} \|\phi(w_i) - \psi(w_i)\| - \frac{1}{m} \sum_{i=1}^{m} \|\phi(w_i)\| - \frac{1}{m} \sum_{i=1}^{m} \|\phi$$

Convergence rates are well understood (Singh et al 2019, Mastouri, Zhu, et al 2021)

- $_{Z}(\phi(a)\otimes\phi(x)\otimes\phi(z))$
- $\widehat{E}(C)$, with
- $C\phi(a_i, x_i, z_i) \|_{\mathcal{H}_{\mathcal{W}}}^2 + \lambda \|C\|_{\mathcal{H}_{\Gamma}}^2$

 $\widehat{C}_{W|A,X,Z} = \Phi(W)(\mathcal{K}_{AXZ} + m \ \lambda)^{-1} \Phi^T(A,X,Z)$

Translation invariant: k(x, y) = k(x - y)

Translation invariant: k(x, y) = k(x - y)

 $\hat{\mu}[\alpha] = \hat{k}[\alpha]\psi[\alpha]$

Translation invariant: k(x, y)

 $\hat{\mu}[\alpha] = \hat{k}[\alpha]\psi[\alpha]$

Bochner's theorem: \hat{k} is a probability measure.

$$= k(x - y)$$

$$k(x - y)p(y)dy$$

15

KRR estimate of CME: $\hat{\mu}_{X|z}^{(s)}(x) = \sum_{i=1}^{\infty} \hat{\gamma}_{j}^{(s)}(z)k(x_{j},x)$ j = 1

 $\hat{\gamma}_i^{(s)}(z) = (K_Z + s\lambda I)^{-1}K_{ZZ}$

KRR estimate of CME: $\hat{\mu}_{X|_{Z}}^{(s)}(x) = \sum \hat{\gamma}_{i}^{(s)}(z)k(x_{i},x)$ i = 1

 $\hat{\gamma}_i^{(s)}(z) = (K_Z + s\lambda I)^{-1}K_{Zz}$

Fourier transform: $\tilde{\hat{\mu}}_{X|z}^{(s)}(\alpha) = \sum_{i=1}^{s} \hat{\gamma}_{j}^{(s)}(z) e^{-i\alpha x_{j}} \tilde{k}(\alpha)$

KRR estimate of CME: $\hat{\mu}_{X|_{Z}}^{(s)}(x) = \sum \hat{\gamma}_{i}^{(s)}(z)k(x_{i},x)$ i=1

 $\hat{\gamma}_i^{(s)}(z) = (K_Z + s\lambda I)^{-1} K_{Zz}$

Fourier transform: $\tilde{\hat{\mu}}_{X|z}^{(s)}(\alpha) = \sum_{j=1}^{s} \hat{\gamma}_{j}^{(s)}(z) e^{-i\alpha x_{j}} \tilde{k}(\alpha)$

 $(x_j, z_j)_{j=1}^s$

 $(x_j, z_j)_{j=1}^s \longrightarrow \text{Have } \hat{\mu}_{X|z}^n(y) = \sum_{j=1}^n \hat{\gamma}_j^n(z) k(x_j, y).$ i = 1

Where $\hat{\gamma}_{i}^{n}(z) = (K_{ZZ} + n\lambda^{n}I)^{-1}K_{ZZ}$.

Where $\hat{\gamma}_i^n(z) = (K_{ZZ} + n\hat{\lambda}^n I)^{-1}K_{ZZ}$.

Where

$$\hat{\mu}^n_{X|Z} \to^n$$

21

$$\hat{\mu}_{X|z}^{n}(y) = \sum_{j=1}^{n} \hat{\gamma}_{j}^{n}(z)k(x_{j}, y).$$

$$\hat{\psi}_{X|z}^n(\alpha) := \sum_{j=1}^n \hat{\gamma}_j^n(z) e^{i\alpha x_j}.$$

$$\hat{\gamma}_j^n(z) = (K_{ZZ} + n\hat{\lambda}^n I)^{-1} K_{ZZ}$$

Theorem 1. With real, translation-invariant kernel: $\mu_{X|Z}$ iff $\hat{\psi}_{X|Z}^n \to^n \psi_{X|Z}$ in IFT of kernel.

Zhu et al 2022, UAI.

LEMMA 1. Let X_1 , X_2 , X_3 be three independent real random variables

LEMMA 1. Let X_1 , X_2 , X_3 be three independent real random variables, and let

 $Z_1 = X_1 - X_3, Z_2 = X_2 - X_3$.

variables, and let

If the characteristic function of the pair (Z_1, Z_2) does not vanish,

LEMMA 1. Let X_1 , X_2 , X_3 be three independent real random

 $Z_1 = X_1 - X_3, Z_2 = X_2 - X_3$.

LEMMA 1. Let X_1 , X_2 , X_3 be three independent real random variables, and let

If the characteristic function of the pair (Z_1, Z_2) does not vanish, then the distribution of (Z_1, Z_2) determines the distributions of X_1 , X_2, X_3 up to a change of the location.

$Z_1 = X_1 - X_3, Z_2 = X_2 - X_3$.

$M = A + \Delta M$ $N = A + \Delta N$

$M = A + \Delta M$ $N = A + \Delta N$

$$\underbrace{\widetilde{\mathbb{E}}_{\mathscr{P}_{A}}(\alpha) :=}_{\mathscr{P}_{A}}\left[e^{i\alpha A}\right] = \exp\left(\int_{0}^{\alpha} i \frac{\mathbb{E}\left[Me^{i\nu N}\right]}{\mathbb{E}\left[e^{i\nu N}\right]} d\nu\right)$$

Recap: Identification with instrumental variables

Identification:

 $Y = f(A) + \epsilon \quad \mathbb{E}[\epsilon | Z] = 0$ $f(A) = \mathbb{E}[Y|do(A)]$ $\mathbb{E}[Y|Z] = \int_{\mathscr{A}} f(a)p(a|Z)da$

Recap: Identification with instrumental variables

Identification: $Y = f(A) + \epsilon \quad \mathbb{E}[\epsilon | Z] = 0$ $f(A) = \mathbb{E}[Y|do(A)] \qquad A = \gamma Z + \epsilon_A \quad \epsilon_A \perp Z$ $\mathbb{E}[Y|Z] = \int_{\mathscr{A}} f(a)p(a|Z)da \qquad \Longrightarrow \qquad Y = \beta \gamma Z + \beta \epsilon_A + \epsilon_Y$

Linear case:

 $Y = \beta A + \epsilon_Y \quad \epsilon_Y \perp Z$

Recap: Identification with instrumental variables

Identification: $Y = f(A) + \epsilon \quad \mathbb{E}[\epsilon | Z] = 0$ $f(A) = \mathbb{E}[Y|do(A)] \qquad A = \gamma Z + \epsilon_A \quad \epsilon_A \perp Z$ $\mathbb{E}[Y|Z] = \int f(a)p(a|Z)da \qquad \Longrightarrow \qquad Y = \beta \gamma Z + \beta \epsilon_A + \epsilon_Y$

Linear case:

 $Y = \beta A + \epsilon_Y \quad \epsilon_Y \perp Z$

(Strong) Assumptions: Additive error model $(Z! \perp A)_G$ $(Z \perp Y)_{G_{\bar{A}}}$

False IV: using same 'IV' for several different actions.

Recap: Identification with instrumental variables

Identification: $Y = f(A) + \epsilon \quad \mathbb{E}[\epsilon | Z] = 0$ $f(A) = \mathbb{E}[Y | do(A)] \qquad A = \gamma Z + \epsilon_A \quad \epsilon_A \perp Z$ $= \int f(a)p(a | Z)da \qquad \implies Y = \beta \gamma Z + \beta \epsilon_A + \epsilon_A$

Linear case: $Y = \beta A + \epsilon_Y \quad \epsilon_Y \perp Z$ $\implies Y = \beta \gamma Z + \beta \epsilon_A + \epsilon_Y$

(Strong) Assumptions: - Additive error model $(Z! \perp A)_G$ $(Z \perp Y)_{G_{\bar{A}}}$

False IV: using same 'IV' for several different actions.

Recap: Identification with instrumental variables

Identification: $Y = f(A) + \epsilon \quad \mathbb{E}[\epsilon | Z] = 0$ $f(A) = \mathbb{E}[Y|do(A)]$ $\mathbb{E}[Y|Z] = \int f(a)p(a|Z)da$

Linear case: $Y = \beta A + \epsilon_Y \quad \epsilon_Y \perp Z$ $A = \gamma Z + \epsilon_A \quad \epsilon_A \perp Z$ $\implies Y = \beta \gamma Z + \beta \epsilon_A + \epsilon_Y$

???

But if $f(a) = \theta^T \phi(a)$, then simplies to $\mathbb{E}[Y|Z] = \theta^T \mathbb{E}[\phi(A)|Z]$

(Strong) Assumptions: - Additive error model $(Z! \perp A)_G$ $(Z \perp Y)_{G_{\bar{A}}}$

False IV: using same 'IV' for several different actions.

Recap: Identification with instrumental variables

Identification: $Y = f(A) + \epsilon \quad \mathbb{E}[\epsilon | Z] = 0$ $f(A) = \mathbb{E}[Y|do(A)]$ $\mathbb{E}[Y|Z] = \int f(a)p(a|Z)da$

Linear case: $Y = \beta A + \epsilon_Y \quad \epsilon_Y \perp Z$ $A = \gamma Z + \epsilon_A \quad \epsilon_A \perp Z$ $\implies Y = \beta \gamma Z + \beta \epsilon_A + \epsilon_Y$

???

But if $f(a) = \theta^T \phi(a)$, then simplies to $\mathbb{E}[Y|Z] = \theta^T \mathbb{E}[\phi(A)|Z]$

To induce well-posedness:

- Assume f in RKHS.
- Tikhonov regularisation.

$M = A + \Delta M$ $N = A + \Delta N$

$$\underbrace{\widetilde{\mathbb{E}}_{\mathscr{P}_{A}}(\alpha) :=}_{\mathscr{P}_{A}}\left[e^{i\alpha A}\right] = \exp\left(\int_{0}^{\alpha} i \frac{\mathbb{E}\left[Me^{i\nu N}\right]}{\mathbb{E}\left[e^{i\nu N}\right]} d\nu\right)$$

Application scenario

$$\underbrace{\psi_{\mathscr{P}_{A|z}}(\alpha) :=}_{\mathbb{P}_{A|z}\left[e^{i\alpha A} \mid z\right]} = \exp\left(\int_{0}^{\alpha} i \frac{\mathbb{E}\left[Me^{i\nu N} \mid z\right]}{\mathbb{E}\left[e^{i\nu N} \mid z\right]} dx\right)$$

How to compute the right hand side?

$$\underbrace{\psi_{\mathscr{P}_{A|z}}(\alpha) :=}_{\mathbb{P}_{A|z}\left[e^{i\alpha A} \mid z\right]} = \exp\left(\int_{0}^{\alpha} i \frac{\mathbb{E}\left[Me^{i\nu N} \mid z\right]}{\mathbb{E}\left[e^{i\nu N} \mid z\right]}dz\right)$$

Zhu et al, UAI 2022, Causal Inference with Treatment Measurement Error: A Nonparametric IV Approach.

Advantages of MEKIV

- White 2011.
- 极少的超参数调参。
- 对CME建模,而非对整个分布函数建模。

• 无关于分布的假设 对Kotlarski假设的放宽: Evdokimov and

MEKIV results

Demand Design (Mixture of Gaussians)

Summary of techniques and future work

- Kotlarski引理允许我们从它们的两个线性组合中识别三个看不 见的变量。这是否可以被继续探索?
- 特征函数和均值嵌入之间的对偶性是否可以带来更多两个方 向的融合?
- 需要放宽加性误差假设。
- 需要放宽instrumental variable假设。

Tchetgen-Tchetgen et al 2020. An Introduction to Proximal Causal Learning.

Tchetgen-Tchetgen et al 2020. An Introduction to Proximal Causal Learning.

Average causal effect estimation: $\mathbb{E}[Y|do(A = a)] = \int_{W} h(a, w, x)p(w, x)dxdw$

Tchetgen-Tchetgen et al 2020. An Introduction to Proximal Causal Learning.

Tchetgen-Tchetgen et al 2020. An Introduction to Proximal Causal Learning.

Average causal effect estimation: $\mathbb{E}[Y|do(A = a)] = \int_{VW} h(a, w, x)p(w, x)dxdw$ How to get h? • Expectation operator: $\mathbb{E}[g(\cdot_U) | A, Z, X]$ • $\mathbb{E}[Y|A, U, X] = \int h(A, w, x)p(w, x | U, X)dxdw$ $\mathbb{E}[Y - h(A, W, X) | A, Z, X] = 0 \text{ a.s. } P_{AZX}$

Average causal effect estimation: $\mathbb{E}[Y|do(A = a)] = \int_{VW} h(a, w, x)p(w, x)dxdw$ How to get h? • Expectation operator: $\mathbb{E}[g(\cdot_U) | A, Z, X]$ • $\mathbb{E}[Y|A, U, X] = \int h(A, w, x)p(w, x | U, X)dxdw$ $\mathbb{E}[Y - h(A, W, X) | A, Z, X] = 0 \text{ a.s. } P_{AZX}$

Average causal effect estimation: $\mathbb{E}[Y|do(A = a)] = \int_{VW} h(a, w, x)p(w, x)dxdw$ How to get h? • Expectation operator: $\mathbb{E}[g(\cdot_U) | A, Z, X]$ • $\mathbb{E}[Y|A, U, X] = \int h(A, w, x)p(w, x | U, X)dxdw$ $\mathbb{E}[Y - h(A, W, X) | A, Z, X] = 0 \text{ a.s. } P_{AZX}$ Normal regression equation: " $\mathbb{E}[Y - h(A, Z, X) | A, Z, X] = 0$ a.s. P_{AZX} " Here we also need to take the expectation over $P_{W|AZX}$.

Average causal effect estimation: $\mathbb{E}[Y|do(A = a)] = \int_{VW} h(a, w, x)p(w, x)dxdw$ How to get h? • Expectation operator: $\mathbb{E}[g(\cdot_U) | A, Z, X]$ • $\mathbb{E}[Y|A, U, X] = \int h(A, w, x)p(w, x | U, X)dxdw$ $\mathbb{E}[Y - h(A, W, X) | A, Z, X] = 0 \text{ a.s. } P_{AZX}$ Normal regression equation: " $\mathbb{E}[Y - h(A, Z, X) | A, Z, X] = 0$ a.s. P_{AZX} " Here we also need to take the expectation over $P_{W|AZX}$.

 $\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \text{ a.s. } P_{AXZ}$

 $\mathbb{E}[(Y - h(A, X, W))g(A, X, Z)] = 0 \text{ a.s. } P_{AXZ} \text{ For all g}$

Mastouri*, Z.*, et al. Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restrictions. ICML 2021.

Mastouri*, Z.*, et al. Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restrictions. ICML 2021.

$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \text{ a.s. } P_{AXZ}$

$\mathbb{E}[(Y - h(A, X, W))g(A, X, Z)] = 0 \text{ a.s. } P_{AXZ} \text{ For all g}$

 $\mathbb{E}[(Y - h(A, X, W))g(A, X, Z)] = 0 \text{ a.s. } P_{AXZ} \text{ For all g}$

Precursor loss: $R(h) = \sup(\mathbb{E}[(Y - h(A, W, X))g(A, Z, X)])^2$ 8

Mastouri*, Z.*, et al. Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restrictions. ICML 2021.

$\mathbb{E}[Y - h(A, X, W) | A, X, Z] = 0 \text{ a.s. } P_{AXZ}$

	•	If E[A B] = 0,
	•	Then (for g measurable):
	•	E[Ag(B)] = E[E[Ag(B) B]]
~	•	= E[E[A B]g(B)] = 0

 $\mathbb{E}[Y - h(A, X, W) | A$

 $\mathbb{E}[(Y - h(A, X, W))g(A, X, Z)] = 0 \text{ a.s. } P_{AXZ} \text{ For all g}$

Precursor loss:

 $R(h) = \sup(\mathbb{E}[(Y - h)])$ 8

Mastouri*, Z.*, et al. Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restrictions. ICML 2021.

$$[X, X, Z] = 0$$
 a.s. P_{AXZ}

•	If E[A B] = 0,
•	Then (for g measurable):
•	E[Ag(B)] = E[E[Ag(B) B]]
•	= E[E[A B]g(B)] = 0

$$(A, W, X))g(A, Z, X)])^2$$

• Restrict g to
$$\mathcal{H}_{\mathcal{AXE}}$$

PMMR surrogate loss $R_k(h)$ k indexes the kernel.

 $R(h) = \sup(\mathbb{E}[(Y - h(A, W, X))g(A, Z, X)])^2$ 8

 $R_k(h) =$ $g \in \mathcal{H}_{\mathscr{AZX}}, \quad \|g\| \leq 1$

 $= \mathbb{E}[(Y - h(A, W, X))(Y' - h(A', W', X'))k((A, Z, X), (A', Z', X'))]$

Precursor loss:

sup $(\mathbb{E}[(Y - h(A, W, X))\langle g, k((A, Z, X), \cdot) \rangle])^2$

Precursor loss: $R(h) = \sup(\mathbb{E}[(Y - h(A, W, X))g(A, Z, X)])^2$ *g* Restrict g to $\mathcal{H}_{\mathcal{AXF}}$ $\sup \quad (\mathbb{E}[(Y - h(A, W, X))\langle g, k((A, Z, X), \cdot) \rangle])^2$ $R_k(h) =$ $g \in \mathcal{H}_{\mathscr{AZX}}, \quad \|g\| \leq 1$ $= \mathbb{E}[(Y - h(A, W, X))(Y' - h(A', W', X'))k((A, Z, X), (A', Z', X'))]$ V-statistic: $R_V(h) := \frac{1}{n^2} \sum_{j=1}^n (y_i - h_i)(y_j - h_j)k_{ij}$ (reweighed ERM!) n^2 . i,j=1

Mastouri*, Z.*, et al. Proximal Causal Learning with Kernels: Tws Stage Estimation and Moment Restrictions. ICML 2021.