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Overview

• What we want to achieve with causality.


• Why is causality suitable for social sciences?


• The characteristics of social science data.


• Algorithms. 


• Proximal causal learning with kernels.


• Causal inference under treatment measurement error.


• Generalised Robinson Decomposition.
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What we want to achieve with Causality?

A metric to compare different actions with respect to their effects.
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Why causal inference? An example.

f ?
A

Grade retention

Y

Cognitive 
outcome

U

Cognitive ability

Fruehwirth, Navarro, Takahashi. 2016: How the Timing of Grade Retention Affects Outcomes: Identification and Estimation of Time-Varying Treatment Effects.

Image source:  Google image
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The target quantity

A Y

U

Observed data

A Y

U

a

E[Y|do(A := a)]

A Y

U

Observed data
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Warm-up: Observed confounders

U

YA
E[Y|do(A)] ?

Backdoor adjustment:  𝔼[Y |do(a)] =
n

∑
i=1

𝔼[Y |A = a, U = i]ℙ(U = i)

A Y

U

a
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Warm-up: Observed confounders
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E[Y|do(A)] ?

Backdoor adjustment:  𝔼[Y |do(a)] =
n

∑
i=1

𝔼[Y |A = a, U = i]ℙ(U = i)
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U

YA
E[Y|do(A)] ?
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U
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Unobserved confounders? 
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Identification with instrumental variables

(Strong) Assumptions: 
- Additive error model 
-  
-

(Z! ⊥ A)G
(Z ⊥ Y)GĀ

U

YA
E[Y|do(A)] ?

AZ

Identification: 
 
 

Y = f(A) + U, 𝔼[U] = 0, U ⊥ Z
f(A) = 𝔼[Y |do(A)]

𝔼[Y |Z] = ∫𝒜
f(a)p(a |Z)da

Linear case: 
 
 

Y = βA + αYU U ⊥ Z
A = γZ + αAU U ⊥ Z

⟹ Y = βγZ + (βαA + αY)U

Relax the IV to allow for some dependence with U? 

False IV: using same ‘IV’ for several different actions.
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Why is causality suitable for social sciences?

• Social sciences often consider decision making for positive impact.


• High-stake domain so we should try to use observational data rather than 
perform adhoc experiments.


• Spurious correlations need to be corrected by causal algorithms.
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But surely the scenarios described are unrealistic?
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The characteristics of social science data
• Observational data generated from unknown graph.


• Randomised control trial not always possible.


• Without graph, cannot compute treatment effect.


• Noisy / Measurement error - on exposure variables, response variables, and potentially other 
covariates.


• Masks interesting relationships in data. 


• High-dimensional - e.g. text data, video data.


• Regularisation bias.


• Confounded - e.g. exam outcome and exam preparation is confounded by aptitude. 


• Sometimes the confounding is not observed. 


• Simpson’s paradox.
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The characteristics of social science data

Revision time Exam results

Aptitude

Revision time Exam results

Aptitude
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The characteristics of social science data

Family income Exam results

Aptitude

Mother’s 
occupation

Father’s 
occupation

Home location

Friends’ exam 
results

Diet

?
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The characteristics of social science data

Mastery Exam results
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The characteristics of social science data

Mask interesting 
relationships:

A

Y

Mastery Exam results

Career outcome
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The characteristics of social science data

…

X Y
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The characteristics of social science data

Repeating 

grades Exam results

Aptitude

31



The characteristics of social science data

Simpson’s 
paradox:

A A

Repeating 

grades Exam results

Aptitude
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Four problem themes

Measurement  
noises

Confounding
High 

dimensional 
data

Unknown 
graph structure
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Overview
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• Why is causality suitable for social sciences?


• The characteristics of social science data.


• Algorithms. 

34



A causal toolset for social sciences.

Measurement  
noises

Confounding
High 

dimensional 
data

Unknown 
graph structure
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Unknown graph structure.
• Partial claims about the causal graph can be made with reasonable confidence


• Temporal reasoning, or from some experimentation. 


• In some situations, partial knowledge of graph structure is enough. E.g. just need to be able to 
group proxies into ‘treatment-inducing’ and ‘outcome-inducing’ while the structure among 
themselves don’t matter.


• Just because we are starting from a graph does not mean we are making strong graphical 
assumptions.


• It is an assumption; we have to start from some assumptions.


• Structural learning algorithm does not mean we are suddenly making no assumptions - rather 
the structural learning algorithms also depends on their meta-assumptions.


• The strength of assumptions we need depends on the amount/quality of the data we have.


• The quality of results from the structural learning algorithm depends on the quality of data.
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The characteristics of social science data

Revision time Exam results

Aptitude

Revision time Exam results

Aptitude
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A causal toolset for social sciences.
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A causal toolset for social sciences.

Measurement  
noises

Unobserved 
Confounding

High 
dimensional 

data

Observed  
Confounding

Causal Inference Under 
Treatment Measurement Error

Proximal causal 
learning with kernels Generalised Robinson 

Decomposition
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Generalised Robinson Decomposition

Kaddour, Z., Liu, Kusner, Silva. Causal Inference for Structured Treatments. NeurIPS 2021.
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Assumptions and usage contexts
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Assumptions and usage contexts

A

X

Y

Practise-
essays

Exam 
results

Past teachers’ 
reports

•Data in arbitrary forms - e.g. text, images;  
low- or high-dimensional data.


•Continuous data or data with many 
categories - e.g. different intensities of 
revision.

•More realistic examples from the 

audience are appreciated!


•Overlap condition required on features of 
A x features of X.


•Conditional average treatment effect.
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Why not just do regression?

A

X

Y

Practise-
essays

Exam 
results

Past teachers’ 
reports
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The characteristics of social science data

…

X Y

Regularisation 
bias
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Robinson Decomposition
• Allows us to construct a learnable objective of the binary CATE. 

• Define the propensity score . 

• Define the conditional mean outcome . 

• Define  and  we yield the objective 

 

• We call  and  the (estimated) nuisance components.

e(x) := p(A = 1 |x)

m(x) := 𝔼[Y |x]

ỹi := yi − m̂(xi) ãi := ai − ̂e(xi)

τ̃b( ⋅ ) = arg min
τb { 1

n

n

∑
i=1

(ỹi − ãi × τb(xi))2 + Λ(τb( ⋅ ))}
m̂(x) ̂e(x)

- Xinkun Nie and Stefan Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika, 2021.

- Thanks to Jean Kaddour for providing the original slides the current slide is based on.60



Generalised Robinson Decomposition
• Product Effect Assumption: Re-parameterise the outcome surface as 

 where  are feature maps. 

• Universality property: As we let the dimensionality of  and  
grow, we may approximate any bounded function in . 

• So the conditional average treatment effect is 

Y = g(X)⊤h(A) + ϵ g : 𝒳 → ℝd, h : 𝒜 → ℝd

g( ⋅ ) h( ⋅ )
𝒞(𝒳 × 𝒜)

τ(a′ , a, x) = g(x)⊤(h(a′ ) − h(a))

Thanks to Jean Kaddour for providing the original slides the current slide is based on.

Kaddour, Z., Liu, Kusner, Silva. Causal Inference for Structured Treatments. NeurIPS 2021.
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Generalised Robinson Decomposition
• Define propensity features . 

• Recall . 

• Following the same steps as for the binary treatment case, we yield 
 

• Solution: For a fixed  a generalisation to structured treatment is 

eh(x) := 𝔼[h(A) |x]

m(x) := 𝔼[Y |x] = g(x)⊤eh(x)

Y − m(X) = g(X)⊤(h(A) − eh(X)) + ϵ

h( ⋅ )

̂g( ⋅ ) = arg min
g { 1

n

n

∑
i=1

(Yi − m̂(Xi) − g(Xi)⊤(h(Ai) − ̂eh(Xi)))2}

Thanks to Jean Kaddour for providing the original slides the current slide is based on.
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Why is the decomposition useful?

̂f(x, a) := Ψ(x)⊤ΘΦ(a)

f*(x, a) := 𝔼[Y |x, a]
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f*( ⋅x , ⋅a ) := 𝔼[Y | ⋅x , ⋅a ]

̂f( ⋅x , ⋅a ) := Ψ( ⋅x )⊤ΘΦ( ⋅a )

Why is the decomposition useful?

↓ Õ(n− 1
2(1 + p) )

* Main statement in Theorem 2 of paper.

m̂( ⋅x ) → m( ⋅x )
̂eh( ⋅x ) → eh( ⋅x )
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m̂( ⋅x ) →O(n−1/4) m( ⋅x )

̂eh( ⋅x ) →O(n−1/4) eh( ⋅x )
f*( ⋅x , ⋅a ) := 𝔼[Y | ⋅x , ⋅a ]

̂f( ⋅x , ⋅a ) := Ψ( ⋅x )⊤ΘΦ( ⋅a )

Why is the decomposition useful?

↓ Õ(n− 1
2(1 + p) )

* Main statement in Theorem 2 of paper.

Overlap: 𝒫Ψ(X)×Φ(T) > 0
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• The target or nuisance functions never converge faster than . 

• Usually this rate caps the rate of the target function - see the discussion 
in e.g. Chernozhukov et al., 2018 (Double Machine Learning).

O(n−1/2)

Why does this mean?

We show that in the fixed features setting, the target function 

converges at almost  rate as long as the nuisance 
functions converge at  rate.

n− 1
2(1 + p)

n−1/4
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Practical algorithm

• Stage 1: Learn parameters of  based on objective  

• Stage 2: Alternate between optimizing  and   

A.  Freeze  and  to optimize  based on 

 

B. Freeze   and   to optimize    based on  

m̂θ(X) Jm(θ) =
m

∑
i=1

(yi − m̂θ(xi))2

̂gψ(X), ĥϕ(A) ̂eh
η(X)

m̂θ(X) ̂eh
η(X) ̂gψ(X), ĥϕ(A)

Jg,h(ϕ, ψ) =
n

∑
i=1 (yi − {m̂θ(xi) + ̂gψ(xi)⊤(ĥϕ(ai) − ̂eh

η(xi))})
2

m̂θ(X) ̂gψ(X), ĥϕ(T) ̂eh
η(X)

Jeh(η) =
n

∑
i=1

d

∑
j=1

(ĥϕ(ai)( j) − ̂eh
η(xi)( j))

2
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Experimental Setup
• Data: Two semi-synthetic datasets involving graph-treatments

68

Small-World (SW)
X: Samples from multivar. uniform dist.
T: Watts–Strogatz small-world graphs

The Cancer Genomic Atlas 
(TCGA)1

X: Gene expression data of cancer patients
T: Molecular graphs from QM92 database

1 | Data generated by the TCGA Research Network: https://www.cancer.gov/tcga.
2 | L. Ruddigkeit, et al., Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17, 2012.
3 | Harada & Kashima, GraphITE: Estimating Individual Effects of Graph-structured Treatments, 2020.

Slide credit: Jean Kaddour
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Experimental Setup
• Data: Two semi-synthetic datasets involving graph-treatments

• Tasks: Predicting in-sample/out-sample CATEs

• Baselines: GraphITE3, Vanilla Regression (GNN/CAT), Zero

• Metric: (Un-)Weighted expected Precision in Estimation of Het. Effects
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Results:
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In-Sample Out-
Sample

Slide credit: Jean Kaddour



SW
Results:
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In-Sample Out-
Sample

SIN GraphITE GNN CAT Zero

Slide credit: Jean Kaddour



SW
Results:
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TCGA

In-Sample Out-
Sample

SIN GraphITE GNN CAT Zero

Slide credit: Jean Kaddour



WPEHE for most likely K=6 treatments

75

Slide credit: Jean Kaddour



Take home messages
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• This is an algorithm that can take arbitrary treatments: categorical, 
continuous, structural…. 

• The structures in the ‘structural’ treatments do NOT have to be causal! 

• Only needs to model causal relationships when we need to ask about 
interventions on it. 

• Fast rates from partially out the nuisance parameters.



Proximal Causal Learning with Kernels

Mastouri*, Z.*, et al. Proximal Causal Learning with Kernels: Two-stage Estimation and Moment Restriction. ICML 2021. 
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Assumptions

U

YA
E[Y|do(A)]

X

WZ

Grade retention Cognitive 
outcome

Cognitive ability

Elementary school 
scores Kindergarten scores

U and X contains all the confounders 
between A and Y.



Y ⊥ Z |A, U, X
W ⊥ (A, Z) |U, X

78

U, X, Z, W 
needs to be 
sufficiently 
correlated: 

Completeness 
Condition (Miao 
et al. 2018)

Tchetgen-Tchetgen et al 2020. An Introduction to Proximal Causal Learning.



Proximal Causal Learning Background

U

YA
E[Y|do(A)]

X

WZ

Grade retention Cognitive 
outcome

Cognitive ability

Elementary school 
scores Kindergarten scores

Y = β0 + βaA + βuU + β′ xX + ϵy

W = η0 + ηuU + η′ xX + ϵw

𝔼[Y |A, Z, X] = β0 + βaA + βu𝔼[U |A, Z, X] + β′ xX
𝔼[W |A, Z, X] = η0 + ηu𝔼[U |A, Z, X] + η′ xX
𝔼[Y |A, Z, X] = β*0 + βaA + β*u 𝔼[W |A, Z, X] + (β*x )′ X
𝔼[Y |A, Z, X] = 𝔼[h(A, W, X) |A, Z, X]

𝔼[Y |do(A)] = ∫W,X
h(A, W, X)dwdx
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Proximal Causal Learning Background
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E[Y|do(A)]
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Grade retention Cognitive 
outcome

Cognitive ability

Elementary school 
scores Kindergarten scores

U, X, Z, W 
needs to be 
sufficiently 
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Completeness 
Condition (Miao 
et al. 2018)
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Y = β0 + βaA + βuU + β′ xX + ϵy

W = η0 + ηuU + η′ xX + ϵw

𝔼[Y |A, Z, X] = β0 + βaA + βu𝔼[U |A, Z, X] + β′ xX
𝔼[W |A, Z, X] = η0 + ηu𝔼[U |A, Z, X] + η′ xX
𝔼[Y |A, Z, X] = β*0 + βaA + β*u 𝔼[W |A, Z, X] + (β*x )′ X
𝔼[Y |A, Z, X] = 𝔼[h(A, W, X) |A, Z, X]

𝔼[Y |do(A)] = ∫W,X
h(A, W, X)dwdx
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Proximal Causal Learning Background

U

YA
E[Y|do(A)]

X

WZ

Grade retention Cognitive 
outcome

Cognitive ability

Elementary school 
scores Kindergarten scores

Y = β0 + βaA + βuU + β′ xX + ϵy

W = η0 + ηuU + η′ xX + ϵw

𝔼[Y |A, Z, X] = β0 + βaA + βu𝔼[U |A, Z, X] + β′ xX
𝔼[W |A, Z, X] = η0 + ηu𝔼[U |A, Z, X] + η′ xX
𝔼[Y |A, Z, X] = β*0 + βaA + β*u 𝔼[W |A, Z, X] + (β*x )′ X
𝔼[Y |A, Z, X] = 𝔼[h(A, W, X) |A, Z, X]

𝔼[Y |do(A)] = ∫W,X
h(A, W, X)dwdx

Y = β*0 + βaA + β*u W + (β*x )′ X

hlinear

+ ϵ* 𝔼[ϵ* |A, Z, X] = 0
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Proximal Causal Learning Background

U

YA
E[Y|do(A)]

X

WZ

Grade retention Cognitive 
outcome

Cognitive ability

Elementary school 
scores Kindergarten scores

Y = β0 + βaA + βuU + β′ xX + ϵy

W = η0 + ηuU + η′ xX + ϵw

𝔼[Y |A, Z, X] = β0 + βaA + βu𝔼[U |A, Z, X] + β′ xX
𝔼[W |A, Z, X] = η0 + ηu𝔼[U |A, Z, X] + η′ xX
𝔼[Y |A, Z, X] = β*0 + βaA + β*u 𝔼[W |A, Z, X] + (β*x )′ X
𝔼[Y |A, Z, X] = 𝔼[h(A, W, X) |A, Z, X]

𝔼[Y |do(A)] = ∫W,X
h(A, W, X)dwdx

𝔼[Y |A, Z, X] = 𝔼[h(A, W, X) |A, Z, X]

𝔼[Y |do(A)] = ∫W,X
h(a, w, x)p(w, x)dwdx

Y = β*0 + βaA + β*u W + (β*x )′ X

hlinear

+ ϵ* 𝔼[ϵ* |A, Z, X] = 0
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needs to be 
sufficiently 
correlated: 

Completeness 
Condition (Miao 
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Proximal Causal Learning Background

U

YA
E[Y|do(A)]

X

WZ

Grade retention Cognitive 
outcome

Cognitive ability

Elementary school 
scores Kindergarten scores

Average causal effect estimation:  
 




Where h is from:            
 

𝔼[Y |do(A = a)] = ∫XW
h(a, w, x)p(w, x)dxdw

𝔼[Y − h(A, W, X) | A, Z, X] = 0  a.s. PAZX
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U, X, Z, W 
needs to be 
sufficiently 
correlated: 

Completeness 
Condition (Miao 
et al. 2018)

Tchetgen-Tchetgen et al 2020. An Introduction to Proximal Causal Learning.



Introduction to kernel ridge regression 

f(x) = θ⊤ϕ(x), ϕ(x) ∈ ℝD

θ* = arg min
θ∈ℝD (

n

∑
i=1

(yi − ϕ(xi)⊤θ)2 + λ∥θ∥2)
Finite-basis / 
Featurised 
regression

Reproducing 
Kernel Hilbert 
Space (RKHS)

f(x) = ⟨ f, k(x, ⋅ )⟩ℋ

θ* = arg min
θ∈ℋ (

n

∑
i=1

(yi − ⟨ϕℋ(xi), θ⟩ℋ)2 + λ∥θ∥2
ℋ)

Gretton lecture slides on Kernel Methods - lecture 1. http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/Slides4A.pdf
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Introduction to kernel ridge regression 

f(x) = θ⊤ϕ(x), ϕ(x) ∈ ℝD

θ* = arg min
θ∈ℝD (

n

∑
i=1

(yi − ϕ(xi)⊤θ)2 + λ∥θ∥2)
Finite-basis / 
Featurised 
regression

Reproducing 
Kernel Hilbert 
Space (RKHS)

f(x) = ⟨ f, ϕ(x)⟩ℋ, ϕ(x) ∈ ℋ, ⟨ϕ(x), ϕ(y)⟩ℋ = k(x, y)

f* = arg min
f∈ℋ (

n

∑
i=1

(yi − ⟨ϕ(xi), f⟩ℋ)2 + λ∥f∥2
ℋ)

86

Gretton lecture slides on Kernel Methods - lecture 1. http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/Slides4A.pdf
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Proximal Causal Learning Background

Solve for h:            
 

𝔼[Y − h(A, W, X) | A, Z, X] = 0  a.s. PAZX

87

h ∈ ℋAWX

h(A, W, X) = ⟨h, ϕ(A) ⊗ ϕ(W) ⊗ ϕ(X)⟩ℋAWX

𝔼[h(A, W, X) |A, Z, X] = ⟨h, ϕ(A) ⊗ 𝔼[ϕ(W) |A, Z, X]

μW|A,Z,X

⊗ ϕ(X)⟩ℋAWX

Mastouri*, Z.*, et al. Proximal Causal Learning with Kernels: Two-stage Estimation and Moment Restriction. ICML 2021. 
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h ∈ ℋAWX
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h ∈ ℋAWX

h(A, W, X) = ⟨h, ϕ(A) ⊗ ϕ(W) ⊗ ϕ(X)⟩ℋAWX
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Introduction to kernel ridge regression 

Finite basis:

RKHS basis:

f(x) = θ⊤ϕ(x)
𝔼[ f(X) |Z] = θ⊤𝔼[ϕ(x) |Z]

f(x) = < f, ϕ(x) >ℋX

𝔼[ f(X) |Z] = < f, 𝔼[ϕ(X) |Z]

μX|Z

>ℋX

𝔼[ϕ(x) |Z] = Θ⊤ψ(Z)

Θ* = arg min
Θ∈ℝDZ×DX (

n

∑
i=1

ϕ(xi) − Θ⊤ψ(zi)
2

+ λ∥Θ∥2
2)

μX|Z = E*λ ψ(Z)

Eλ = arg min
E∈L2(ℋ𝒳,ℋ𝒵) (

n

∑
i=1

ϕ(xi) − E*ψ(zi)
2

ℋ𝒳
+ λ∥E∥2

L2(ℋ𝒳,ℋ𝒵))

LearningDefinition

[1] Gretton lecture slides on Kernel Methods - lecture 4. http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture5_distribEmbed_1.pdf

[2] Singh et al 2019. Kernel Instrumental Variable Regression. 90

http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture5_distribEmbed_1.pdf


 𝔼[Y − h(A, X, W) | A, X, Z] = 0  a.s. PAXZ

Kernel Proxy Variable (KPV) 

 
 


 

Stage1. KRR : ϕ(A) ⊗ ϕ(X) ⊗ ϕ(Z) → ϕ(W)

Stage2. KRR : ϕ(A) ⊗ ϕ(X) ⊗ ̂μW|A,X,Z → Y

Mastouri*, Z.*, et al. Proximal Causal Learning with Kernels: Two-stage Estimation and Moment Restriction. ICML 2021. 

Kernel Proxy Variables
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Results

[1] Mastouri*, Z.*, et al. Proximal Causal Learning with Kernels: Two-stage Estimation and Moment Restriction. ICML 2021.

[2] Xu, et al. Deep Proxy Causal Learning and its Application to Confounded Bandit Policy Evaluation. NeurIPS 2021.

Under suitable conditions specified in the paper, KPV provably converges.

Synthetic experiments

However, empirically it might be better to learn adaptive features rather than 
using fixed kernel features.
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Take home messages
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• This is an algorithm allowing nonlinear treatment effect estimation under 
unobserved confounding, with theoretical convergence rates. 

• The conditions are weak because only partial knowledge of the graph is 
needed. 

• Only need to categorise the proxies, do not need to know their own 
causal structures.



Causal Inference Under Treatment Measurement Error
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Flash back: The characteristics of social science data

Mask interesting 
relationships:

A

Y

Mastery Exam results

Career outcome
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Measurement error on action variables - overview

Kotlarski’s:  

 

ψA(α)

𝔼𝒫A
[eiαA] = exp (∫

α

0
i
𝔼[MeiνN]
𝔼[eiνN]

dν)
 

A Y

U

M N

Want: 
𝔼[Y |do(A)]


M = A + ΔM
N = A + ΔN
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Recap: Identification with instrumental variables

U

YA
E[Y|do(A)] ?

AZ

Identification: 
 

 
Y = f(A) + U 𝔼[U |Z] = 0

f(A) = 𝔼[Y |do(A)]
𝔼[Y |Z] = ∫𝒜

f(a)p(a |Z)da

???
But if , then rhs simplies to
f(a) = ⟨ f, ϕ(a)⟩ℋA

𝔼[Y |Z] = ⟨ f, 𝔼[ϕ(A) |Z]

μA|Z

⟩ℋA
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Measurement error on action variables - overview
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Measurement error on action variables - overview

A Y

U

M

Want: 
𝔼[Y |do(A)]


M = A + ΔM
N = A + ΔN

N

 

Kotlarski’s:  

 

ψA(α)

𝔼𝒫A
[eiαA] = exp (∫

α

0
i
𝔼[MeiνN]
𝔼[eiνN]

dν)
ψA|z(α)

𝔼[eiαA |z] = exp (∫
α

0
i
𝔼[MeiνN |z]
𝔼[eiνN |z]

dν)
Z

What about
?μA|z := 𝔼[ϕ(A) |z]
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From  to  (= )ψ̂n
X|z(α) ̂μn

X|z(y) 𝔼[ϕ(X) |z]

Have .


Where .


Let .


Theorem 1. With translation-invariant, 
characteristic kernel: 




̂μn
X|z(y) =

n

∑
j=1

̂γn
j (z)k(xj, y)

̂γn
j (z) = (KZZ + n ̂λnI)−1KZz

ψ̂n
X|z(α) :=

n

∑
j=1

̂γn
j (z)eiαxj

̂μn
X|Z →n μX|Z iff ψ̂n

X|Z →n ψX|Z in IFT of kernel.

ψA|z(α)

𝔼𝒫A|z
[eiαX](α) = exp ∫

α

0
i

∂
∂υ ψM,N|z(υ,ν)

υ=0

𝔼[MeiνN |z]
𝔼[eiνN |z]

ψN|z(ν)

dν
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Measurement Error KIV
To obtain  : 

 

Differentiate wrt   to remove integral. 

 

(Replace with  sample estimates.)

ψ̂n
A|z

ψA|z(α)

𝔼𝒫A|z
[eiαX](α) = exp ∫

α

0
i

∂
∂υ ψM,N|z(υ,ν)

υ=0

𝔼[MeiνN |z]
𝔼[eiνN |z]

ψN|z(ν)

dν (1)

α

d
dα ψA|z(α)

ψA|z(α)
=

∂
∂υ ψM,N|z(υ, α)

υ=0

ψN|z(α)
(2)

d
dα ψ̂n

A|z(α)

ψ̂n
A|z(α)

=

∂
∂υ ψ̂n

M,N|z(υ, α)
υ=0

ψ̂n
N|z(α)

(2)
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Measurement Error KIV

                                                        f 

                   

                                         


⟹ ̂μn
N|z, ̂μn

M,N|z ̂μn
A|z ⟹

ψ̂n
N|z, ψ̂n

M,N|z ⟹ ψ̂n
A|z

⟺ ⟺

{žj}s
j=1, {y̌j}s

j=1

, {ϕ(zj)}n
j=1

{ϕ(nj), ϕ(mj) ⊗ ϕ(nj)}n
j=1

KRR KRR 

( ) ⋆

Step 1

Step 2

Step 3
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MEKIV results
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Open questions

• Relax the measurement error assumption and IV assumption.


• Extend to sequential settings.
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Take home messages

• Nonparametric features can be learned even using corrupted measurements.


• This algorithm relaxes observability from confounding to treatments.


• IV is a restrictive assumption for observational studies, but can work for 
studies with an experimental component.
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Conclusion

• Causality for social sciences from a high-level perspective:


• Decision making, exploiting observational data, spurious correlation 
correlation.


• Causal graph can be viewed as a way to encode expert knowledge which can 
be hard to learn with pure data.


• Graphs can have a spectrum of restrictiveness.


• Observability assumptions can be relaxed at various degrees.
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