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Wait, can’t | simply learn a model
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Technically, yes! But...
“When solving a problem of interest,

do not solve a more general problem

as an intermediate step.
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Technically, yes! But...
“When solving a problem of interest,

do not solve a more general problem

as an intermediate step.

Try to get the answer that you really

need but not a more general one.”

Viadimir Vapnik, 2006.
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Why targeting the effect directly helps

* Reason 2: it reduces reqgularization bias

* e.g., consider ~ and T with vastly different dimensionalities

.

zing the model in favour of predicting the outcome can make i

IS apimage and T a binary indicator variable

|i'-

ignore the lower-dimensional variable (towards zero-effect)
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Previous work in CATE estimation

* S-Learner (Hill, 2011) » Perfect Match (Schwab et al. 2018)

T-Learner (Athey & Imbens, 2016) Multitask-Learner (Alaa & van der Schaar,

2018)

R-Learner (Nie & Wager, 2017)
CFRnet/TARnet (Shalit et al., 2017) * Bayesian Causal Forest (Hahn et al., 2020)

VCnet (Nie et al., 2021)

X-Learner (Kunzel et al., 2018)
FlexTENet (Curth & van der Schaar, 2021)
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Previous work in CATE estimation

* S-Learner (Hill, 2011) » Perfect Match (Schwab et al. 2018)
* T-Learner (Athey & Imbens, 2016) * Multitask-Learner (Alaa & van der Schaar,
2018)

* R-Learner (Nie & Wager, 2017)
- CFRnet/TARnet (Shalit et al., 2017) - Bayesian Causal Forest (Hahn et al., 2020)

- X-Learner (Kiinzel et al., 2018) * VCnet (Nie et al., 2021)

* FlexTENet (Curth & van der Schaar, 2021)

Most of these deal with binary or

scalar-continuous treatments.
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Why structured treatments?

1. Data-Efficiency
2. (Infinitely)-Many-Treatments-Setup

3. Generalization to unseen treatments
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1. Data-Efficiency
Example: the molecular graph of a drink
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Typical NN architectures for CATE estimation
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. (Infinitely- Many -Treatments settmgs
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3. Generalization to unseen treatments
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How to deal with structured treatments?

* Issue 1: How can we represent the CATE with struct. treatments?
>G@Goal: Taking AND treatment features into account

* Issue 2: How can we learn the relevant feature maps of the effect?
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How to deal with structured treatments?

* Issue 1: How can we represent the CATE with struct. treatments?
>G@Goal: Taking AND treatment features into account
* Issue 2: How can we learn the relevant feature maps of the effect?

>@Goal: Deriving a trainable objective that targets the effect

Ethanol

Quinine
& T
4-0. »

53



Roadmap

* Motivation

* Generalized Robinson Decomposition
* Quasi-Oracle Convergence Rate

* Structured Intervention Networks

* Experiments

* Summary

54



Robinson Decomposition/R-Learner?

1 | Xinkun Nie and Stefan Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika, 2021.
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Robinson Decomposition/R-Learner?

* Allows us to construct a learnable objective of the binary CATE
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Robinson Decomposition/R-Learner?

* Allows us to construct a learnable objective of the binary CATE

* Define the propensity score e(x) = p(T=1|x)

* Define the conditional mean outcome m(x) = E[Y | x]

*Define g 2 . 7 (x;) and §; £ t; —eWg,Yleld the ob)

Tb(-) = argmin 4 —Z i — 1 X 1 ( X@))2 + A(m(¢)) ¢

Tb

ective

\

/

* We call m(x) and g(’gh)e (estimated) nuisance components

1 | Xinkun Nie and Stefan Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika, 2021. 59
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Generalizing RD to structured treatments |

* Define propensity features ’ e (x) 2 E[A(T) | & e,
*Recall () £ B[y | x) = g(x) ¢ (x) —Q
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Generalizing RD to structured treatments |

* Define propensity features ’ e (x) 2 E[h(T) | X] P

)

* Recall m(x) £ E[Y | x] = g(x) " e (x)

N z@
N
4.

")

Y — m(x) :@

TreaE

ntT Outcdme Y

* Following the same steps as for the binary treatment case, we yield

Y —m(X) = g(X)T (h(T) — " (X)) +¢
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Generalizing RD to structured treatments |

- Define propensity features e (x) £ E[W(T) | x]

* Recall m(x) £ E[Y | x] = g(x) " e (x)

Treaf

)

<

2
.
@\@ Ve
>

&y
&%

Y — m(x) :@

mgnt T OutccEne \'4

* Following the same steps as for the binary treatment case, we yield

Y —m(X) =g(X)" (M(T)—e"(X)) +¢

)  — VeV, a A O - a - alllaa ) )
v . J VV\ C ' C v CACU CAVJ U

Solution: For a fixed h(:) a generalization to structured treatments is

SN
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Why is our decomposition useful™?

* Main statement in Theorem 2 of paper.
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Why is our decomposition useful™?

* Main statement in Theorem 2 of paper.

T L= ;'x T(-')CI)V-\/ | omt
f( ) t) \L ( ) 1 (t) m(x)O(_>)m( x)
O(n~ =2+ O(n-1)
. e"(x) — €"(-x)
[ (%) = EY | x,t]
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Why is our decomposition useful™?

T L= ;'x T(-')CI)V-\/ | omt
f( ) t) \L ( ) 1 (t) m(x)O(_>)m( x)
O(n~ =2+ O(n-1)
. e"(x) — €"(-x)
[ (%) = EY | x,t]

- _
Overlap: Py (x)xar) > 0

—

* Main statement in Theorem 2 of paper.
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What does this mean?

- The target or nuisance functions cannot converge faster than O(n=1/2)
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* Usually this rate caps the rate of the target function - see the discussion

in e.g. Chernozhukov et al., 2018 (Double Machine Learning)
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What does this mean?

* The target or nuisance functions cannot converge faster than o, ~1/2)

* Usually this rate caps the rate of the target function - see the discussion

in e.g. Chernozhukov et al., 2018 (Double Machine Learning)

e sh that he fixeaturesetting, the target funcn

converges at almost » = rate as long as the nuisance

functions converge atn™/*rate.

—_—
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Proof outline - Notation

The regret quantities:
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Proof outline - oracle rate

The regret quantities:

Lemma 4. Let L(fo € H.) be a loss function, and R(fe;c) = L(fe) — L(fe.) be the associated
c-regret. Suppose p(r) is a positive, continuous, increasing function. If, V1 < ¢ < C and some
k > 1, the following inequality holds for all fo € H.:

(45)

Then, writing k1 = 2k + % and ko = 2k* + 3, any solution to the regularized minimization problem
with A(c) > p(c),

fo € argmin{L(fo) + k1A(fo)n} (46)
fe€EHCc

also satisfied the following risk bound:

L(fe) < fe'égf{c{L(f@) + k2 A(fo)n
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Proof outline - oracle rate

Mendelson and Neeman (2010) for R:

(c + 1) log(n) ) T s

/n

pn(c) = U (e€) {1 + log (n) + log (log (¢ + e))} (

With 53, Lemma 4 immediately implies that penalized regression over Hc with the oracle loss
function L,,(-) and regularizer 1 p,, (c) satisfies the bound below with high probability:

~

R(©,) = L(©,) - L(®") < ot {L((©) + r20n([|O]l5)} — L(©7) (54)
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Proof outline - oracle rate

Furthermore, Corollary 2.7 in [36] gives that forany 1 < ¢ < C,

o 1L(O) + k2pn([|O]l3)} < L(O7) +1L(O;) — L(O%)} + k2pn(c) (55)

Finally, note that for large enough c,
{L(©])-L(®")} =0,
so the error is dominated by p,,(c), at

1

R ((:)n) O ((1og(n)) e

where O notation ignores the logarithmic factors.




Proof outline - Bridging R and R

Overlap + Boundedness of Y-

Ro(©¢) = Rn(©50)| < 0.125R(O5¢) + 0(pn(c))
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Recap: Generalized Robinson Decomposition

- Define propensity features e (x) £ E[W(T) | x]

)
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* Recall m(x) £ E[Y | x] = g(x) " e (x)

Y — m(x) :@

Treaf

mgnt T OutccEne \'4

* Following the same steps as for the binary treatment ca

Y —m(X) = g(X)" (h(T) — " (X)) +¢

)  — VeV, alVY.ViallFa a - )

aa a a
o/ . WA'A' @ ' @ vV O/ LA LU/ LA NS \J

se, we yield

Solution: For a fixed h(:) a generalization to structured treatments is

g(-) = argmin { | ' - - —eh (XZ)))Q}
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Recap: Generalized Robinson Decomposition

How can we turn this into a
practical learning algorithm?

Solution: For a flxed h( -) a generalization to structured treatments |s |

- g(-) =argmin ¢ — Z (Y m ( g (X )T (h (T;) — &” (X%)))2 \

g
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Two-Stage Training Procedure

* Stage 1: Learn parameters of 7  (x)based on objective

m

Im (0) = Z (i — e (%) )2

1=1
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Two-Stage Training Procedure

* Stage 1: Learn parameters of 7  (x)based on objective

m

R 2
Im (0) = Z (yi — M (xi))
* Stage 2: Alternate between 1optimizingw(X),?qu(T)

90



Two-Stage Training Procedure

* Stage 1: Learn parameters of 7  (x)based on objective

m

R 2
Jm(0) = (v — o (x:))
* Stage 2: Alternate between 1optimizing w(X)»E ¢(T)and éZ(X)

+ a: Freeze i, (X nd éZ(X() optimize ?J\w(X)’]z(Pgﬁd on

n

6= 52 o {450 0 (00 3 50) )

1=1
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Two-Stage Training Procedure

* Stage 1: Learn parameters of 7  (x)based on objective

m

R 2
Jm(0) = (v — o (x:))
* Stage 2: Alternate between 1optimizing w(X)»Tl ¢(T)and éZ(X)

+ a: Freeze i, (X nd éZ(X() optimize gw(X)’];qpérys)d on

n

Tyn(@®,) = > (s — {6 (x:) + G (x)

1=1

_|
7~ N\
=)
-
—~
ﬁ
N
|
a
s
—~
ke
N
N————
——
N———
DO
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Algorithm

a SIN Training.

Input: Stage | data D, := {(x;,y;)}",. Stage 2 data D, =

Step sizes Ag, Ay, Ay, Ag. Number of update steps K. Mini-batch sizes B, B>.

I: Initialize parameters: @, n, ¢, @

2: while not converged do

3: Sample mini-batch {(Xp, y5)},_
4: Evaluate J,, (@)

5. Update @ « 8 — \gVp.J(8)

6: end while

7: while not converged do

m 3

8: Sample mini-batch {( x;, ty,. w,)}mn‘

9: Evaluate .J, 5, (¢, @), J.» (1)

10: for i = 1to K do ~

1: Update ¢ < & — AoV Jyn (¥, @)
12: Update ¥ < 1 — AV J,n (1, @)

13: end for

14: Update p <+ np — /\,,e",,.],_... (n)
15: end while

{(x.

zUt}

> Stage 1

- Stage 2
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280 character PyTorch-like code

# Initialize submodels and optimizers
m, e, g, h = MLP(), MLP(), MLP(), GNN()
m_opt, e_opt, g_opt, h_opt = Adam(m.params(), m_1lr), Adam(e.params(), e_1lr),

# Stage 1: Train m(x)

for batch in train_loader:
X, Y = batch.X, batch.Y
m_opt.zero_grad()
F.mse loss(m(X), Y).backward()
m_opt.step()

tage 2: Train g(x), h(t), e(x)
for batch in train_loader:

X, T, Y = batch.X, batch.T, batch.Y

for _ in range(num_update_steps):
g_opt.zero_grad()
h_opt.zero_grad()
F.mse_loss((g(X)*(h(T) - e(X))).sum(-1), (Y-m(X))).backward()
g_opt.step()
h_opt.step()

e_opt.zero_grad()

F.mse loss(e(X), h(T)).backward()

e_opt.step()
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Experimental Setup

* Data: Two semi-synthetic datasets involving graph-treatments

I _—

Te Cancer Genomic Atlas
(TCGA)1

Gene expression data of cancer patients

Small-World (SW)

X: Samples from multivar. uniform dist.

Watts—Strogatz small-world graphs

1 | Data generated by the TCGA Research Network: https://www.cancer.gov/tcga.
2 | L. Ruddigkeit, et al., Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17, 2012.

3 | Harada & Kashima. GraphlITE: Estimatina Individual Effects of Graph-structured Treatments. 2020. 9%
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Experimental Setup

* Data: Two semi-synthetic datasets involving graph-treatments

I

Te Cancer Genomic Atlas
(TCGA)1

Gene expression data of cancer patients

Small-World (SW)

X: Samples from multivar. uniform dist.

Watts—Strogatz small-world graphs

* Tasks: Predicting in-sample/out-sample CATEs
* Baselines: GraphlITES3, Vanilla Regression (GNN/CAT), Zero

* Metric: (Un-)Weighted expected Precision in Estimation of Het. Effects

- 2
CUPEHE(WPENE) é/ (T (' t,x) — 7 (t',6,%) ) "p(t | x)p (t | x)p(x)dx
X

1 | Data generated by the TCGA Research Network: https://www.cancer.gov/tcga.
2 | L. Ruddigkeit, et al., Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17, 2012.

3 | Harada & Kashima. GraphlITE: Estimatina Individual Effects of Graph-structured Treatments. 2020.
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46 8 10 2 4 6 8 10
Number of treatments K Number of treatments K

2 4 6 s 10 2 4 6 s 10
Number of treatments K Number of treatments K

—CAT Zero

GraphlTE —— GNN




WPEHE for most likely K=6 treatments

Out-sample

TCGA

In-sample

Out-sample

Method ,
In-sample
ZRro 00.26 = 8.12
CAT 01.75 £ 8.85
GNN 37.10 £ 6.84

GraphITE 3481 = 6.70

03.77 = 8.93
49.76 £ 9.73
36.74 £ T.42
35.94 + 8.07

20,63 = 7.0
155.88 + 52.82
30.67 + 8.29
S0.31 -+ 8.96

17.94 = 4.806

146.62 + 42.32

27.57 £ 7.95
2748 £ 8.95

SIN 23.00 =4.56 23.19 £ 5.56

10.98 = 3.45

8.15 = 1.46
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Summary CI-\;TE Structured treat‘Tgnts (e.q. igraphs

g
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1. Data-Efficiency
2. (Infinitely-)Many-Treatments-Settings

3. Generalization to unseen treatments
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Summary CA;TE Structured treatggnts (e.q. ?raphs

g

1. Data-Efficiency
2. (Infinitely-)Many-Treatments-Settings

3. Generalization to unseen treatments

Generalized Rosoncopositon
Y —m(X) = g(X)" (h(T) - "(X)) +¢

e How?

|



