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as an intermediate step. 
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Technically, yes! But...
“When solving a problem of interest, 
do not solve a more general problem 
as an intermediate step. 

Try to get the answer that you really 
need but not a more general one.”  

Vladimir Vapnik, 2006.
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Figure adopted from ”On Inductive Biases for Heterogeneous Treatment Effect Estimation”, Curth & van der Schaar, NeurIPS 2021.

•Reason 1: the effect often exhibits a simpler structure

• For example,            can be very non-smooth for rarely treated X 

• However,                         might be (almost) linear across X 

Targeting the CATE can be much easier



•Reason 2: it reduces regularization bias
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•Reason 2: it reduces regularization bias

• e.g., consider X and T with vastly different dimensionalities

• X is an image and T a binary indicator variable

• Regularizing the model in favour of predicting the outcome can make   it 

ignore the lower-dimensional variable (towards zero-effect)
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Previous work in CATE estimation
• S-Learner (Hill, 2011)

• T-Learner (Athey & Imbens, 2016)

• R-Learner (Nie & Wager, 2017)

• CFRnet/TARnet (Shalit et al., 2017)

• X-Learner (Künzel et al., 2018)
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Most of these deal with binary or 
scalar-continuous treatments.

• Perfect Match (Schwab et al. 2018)

• Multitask-Learner (Alaa & van der Schaar, 
2018)

• Bayesian Causal Forest (Hahn et al., 2020)

• VCnet (Nie et al., 2021)

• FlexTENet (Curth & van der Schaar, 2021)...



Why structured treatments?
1. Data-Efficiency

2. (Infinitely)-Many-Treatments-Setup

3. Generalization to unseen treatments
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1. Data-Efficiency
Example: the molecular graph of a drink
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2. (Infinitely-)Many-Treatments settings



Typical NN architectures for CATE estimation
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This does not scale well in the treatment 
options!

2. (Infinitely-)Many-Treatments settings
Typical NN architectures for CATE estimation



2. (Infinitely-)Many-Treatments settings
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How to deal with structured treatments?
• Issue 1: How can we represent the CATE with struct. treatments?

➢Goal: Taking covariates AND treatment features into account

• Issue 2: How can we learn the relevant feature maps of the effect?

➢Goal: Deriving a trainable objective that targets the effect
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Robinson Decomposition/R-Learner1
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Robinson Decomposition/R-Learner1

• Allows us to construct a learnable objective of the binary CATE
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• Allows us to construct a learnable objective of the binary CATE

• Define the propensity score
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Robinson Decomposition/R-Learner1

• Allows us to construct a learnable objective of the binary CATE

• Define the propensity score

• Define the conditional mean outcome

• Define                                                 , we yield the objective

• We call                     the (estimated) nuisance components 
591 | Xinkun Nie and Stefan Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. Biometrika, 2021.
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• Product Effect Assumption: Re-parameterize the outcome surface as  

   where                                  are feature maps

• Universality property: As we let the dimensionality of                  grow, 

we may approximate any bounded function in
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Issue 1: How can we represent the CATE 
effect?
Solution:



Generalizing RD to structured treatments II
• Define propensity features
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Generalizing RD to structured treatments II
• Define propensity features

• Recall

• Following the same steps as for the binary treatment case, we yield 
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Issue 2: How can we learn the relevant feature maps of the effect?
Solution: For a fixed      , a generalization to structured treatments is

Generalizing RD to structured treatments II
• Define propensity features

• Recall

• Following the same steps as for the binary treatment case, we yield 
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* Main statement in Theorem 2 of paper.
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Why is our decomposition useful*?

* Main statement in Theorem 2 of paper.
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We show that in the fixed features setting, the target function 
converges at almost             rate as long as the nuisance 
functions converge at         rate.
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Proof outline - Notation
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Proof outline - Bridging  and R̂ R̃
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Issue 2: How can we learn the relevant feature maps of the effect?
Solution: For a fixed      , a generalization to structured treatments is

• Define propensity features

• Recall

• Following the same steps as for the binary treatment case, we yield 
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Issue 2: How can we learn the relevant feature maps of the effect?
Solution: For a fixed      , a generalization to structured treatments is

Recap: Generalized Robinson Decomposition
• Define propensity features

• Recall

• Following the same steps as for the binary treatment case, we yield 
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• Stage 1: Learn parameters of           based on objective

• Stage 2: Alternate between optimizing                    and 

• a: Freeze            and           to optimize                      based on 

• b: Freeze            and                       to optimize           based on  

92



Algorithm
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280 character PyTorch-like code
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Experimental Setup
• Data: Two semi-synthetic datasets involving graph-treatments
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Small-World (SW)
X: Samples from multivar. uniform dist.
T: Watts–Strogatz small-world graphs

The Cancer Genomic Atlas 
(TCGA)1

X: Gene expression data of cancer patients
T: Molecular graphs from QM92 database

1 | Data generated by the TCGA Research Network: https://www.cancer.gov/tcga.
2 | L. Ruddigkeit, et al., Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17, 2012.
3 | Harada & Kashima, GraphITE: Estimating Individual Effects of Graph-structured Treatments, 2020.
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Experimental Setup
• Data: Two semi-synthetic datasets involving graph-treatments

• Tasks: Predicting in-sample/out-sample CATEs

• Baselines: GraphITE3, Vanilla Regression (GNN/CAT), Zero

• Metric: (Un-)Weighted expected Precision in Estimation of Het. Effects
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X: Samples from multivar. uniform dist.
T: Watts–Strogatz small-world graphs

The Cancer Genomic Atlas 
(TCGA)1

X: Gene expression data of cancer patients
T: Molecular graphs from QM92 database

1 | Data generated by the TCGA Research Network: https://www.cancer.gov/tcga.
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WPEHE for most likely K=6 treatments
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Summary
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Summary
•What?

•Why?

1. Data-Efficiency

2. (Infinitely-)Many-Treatments-Settings

3. Generalization to unseen treatments
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Summary
•What?

•Why?

1. Data-Efficiency

2. (Infinitely-)Many-Treatments-Settings

3. Generalization to unseen treatments

•How? 
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